

Programming with DSP Processors TMS320C6713/TMS320C6416 on CCS

This course is mainly deals with programming on TMS320C6713/TMS320C6416 DSP Starter Kit (DSK) using CCS, which is a low-cost development platform designed to speed the development of high precision applications based on TI's TMS320C6XXX floating point DSP generation.

COURSE CONTENT :		
Introduction to MATLAB®	 Quick overview on MATLAB® architecture and computing environment Data types and operators in MATLAB® Array and matrix operations Functions Structures Plots 	
Introduction to Digital Signal Processing	 Introduction to signals and systems Sampling and Quantization Overview of Digital Signal Processing Windowing Techniques Filtering 	
Introduction to DSK	 Why Special Purpose processor for DSP History of TMS Series What is Code Composure Studio Difference Between Floating and Fixed Point Processors An Introduction to TMS320C6713 An Introduction to TMS320C6416 	
DSK(TMS320C6X) Architecture	 Von Neumann Architecture and Harvard architecture Concerns on Fixed Point Processors (Quantization Error) Functional Units Pipelining Registers Interrupts McBSP's DMA 	

Hands on DSK	 Introduction to CCS Quick Test of DSK Difference between Compiler, Linker, Assembler Detailed Explanation of Support Files Building a small Project (hello world) Generation of Sinusoid using DIP switch and explanation of the program Illustration of Watch Window, GEL file Few Experiments on Sine generation program using DIP Switch
Plotting with CCS	 Generation of Sine and Plotting with CCS Usage of Circular Buffer Usage of Hardware Interrupt int_11
Profiling with CCS	 Dot Product of Two Arrays Implementing Variable watch Setting up Break Points Profiling Printf function
Real Time Implementation	 Input with Onboard AIC23 Stereo Codec TLV320AIC23 Onboard Stereo Codec Example Program to Illustrate onboard Stereo Codec using Hardware Interrupt and explanation of the program using McBSP's. Example Program to Illustrate onboard Stereo Codec using polling and explanation of the program using McBSP's Example program to illustrate Multi Channelled McBSP's. Examples Illustrating Echo and Delay Example illustrating sine generation using table created by MATLAB Few assignments (Square generation and ramp generation using table created by MATLAB and CCS plotting
Real time Implementation	 Generation of amplitude Modulated signal using C6713 DSK Generation of Pseudorandom Noise using C6713 DSK recording Voice using external Memory(SDRAM)
FIR filters	 Real Time Convolution FIR Implementation of LP HP BP BS Using DSK 6713 DSK FIR Implementation using Pseudorandom Noise sequence as input to filter and output stored in memory

	 Two Notch filters recovering the Corrupted Input Voice Scrambler using Filtering and Modulation
IIR and Adaptive Filters	 IIR filtering using cascaded direct form -II Adaptive Filters What is Adaptive Filter Application of adaptive Filters Least Mean Square Algorithm and RMS Noise Cancellation , System Identification
Implementation of Adaptive Filters	 Implementing Adaptive Filter for sinusoidal Noise cancellation on DSK 6713 Adaptive FIR Filter for System ID of a Fixed FIR as an Unknown System Adaptive FIR for System ID of a Fixed FIR as an Unknown System with Weights of an Adaptive Filter Initialized as an FIR Bandpass-Plotting with CCS Adaptive FIR for System ID of Fixed IIR as an Unknown System
DSP/BIOS	 What id DSP BIOS? Uses of DSP BIOS Sine Generation with DIP Switch Control Through DSP/BIOS Blinking of LEDs at Different Rates Using DSP/BIOS Sine Generation Using BIOS to Set Up Interrupt INT11