

Digital Signal Processing with MATLAB® (25 hours + 15 hours)

This training is about using MATLAB® Signal Processing toolbox for Bio-Medical signal processing, analysis, visualization, and algorithm development. The training covers various topics such as filter design, windowing techniques, transforms, multi-rate signal processing with respect to Bio-Medical Signals etc.

COURSE CONTENT :	
Introduction to DSP (3 hours)	 Introduction to DSP Sampled data systems Aliasing and antialiasing Reconstruction Practical limitations Frequency & amplitude resolution Quantization and timing errors Correlation and convolution Frequency analysis Fourier transforms Frequency 'leakage' Windowing Multi-rate signal processing
Transforms (2 hours)	 Fourier Transform Z - Transform DCT Transform Wavelet Transform
Filters (5 hours)	FIR Filter - FIR digital Filters • FIR filter basics • Analysis of FIR filters • Frequency & impulse responses • The window design method • Optimization design methods • Practical limitations of FIR filters IIR Filter - • IIR filter basics • Analysis of FIR filters • Frequency & impulse responses • IIR filter design • Poles, zeroes and filter response
DSP with MATLAB® (5 hours)	 Introduction to DSP Toolbox Signal processing functions in MATLAB® (conv, conv2, corrcoef, cov, cplxpair, deconv, fft, fft2, fftshift, filter2, freqspace, ifft, ifft2,unwrap) Time domain analysis of a signal

	 Frequency domain analysis of a signal
Digital Filter Design in MATLAB® (2 hours)	 Discrete-Time Filters (Direct form I, Direct form II, lattice filters) 1_D Median filtering Butterworth filter design Chebyshev Type I filter design (pass band ripple) Chebyshev Type II filter design (stop band ripple) Raised cosine FIR filter design Recursive digital filter design
Analog Filter Design in MATLAB® (2 hours)	 Analog Low-pass Filter Prototypes Analog Filter Transformation Bi-linear transformation Impulse-invariant Methods Stabilizing a polynomial Z-Transform partial fraction expansion
Window Design (2 hour)	 Rectangular window Hamming window Hanning window Bartlett window Kaiser window etc
Transforms (2 hour)	 Discrete fourier transform Discrete cosine transform Hilbert transform Discrete wavelet transform inverse transforms
Multi-rate Signal Processing (2 hours)	 Decimation Interpolation Up-Sampling Down-Sampling Re-Sampling
Biomedical signal processing (15 hours)	 Introduction to bio-medical signals Signal acquisition Signal analysis Biomedical signal processing Signal enhancement Artifact removal Hands-on on signal acquisition Hands-on on iBiosaq / iMedilogger